Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.167
Filtrar
1.
Bioorg Med Chem ; 104: 117653, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579492

RESUMO

Carboxylic acids are key pharmacophoric elements in many molecules. They can be seen as a problem by some, due to perceived permeability challenges, potential for high plasma protein binding and the risk of forming reactive metabolites due to acyl-glucuronidation. By others they are viewed more favorably as they can decrease lipophilicity by adding an ionizable center which can be beneficial for solubility, and can add enthalpic interactions with the target protein. However, there are many instances where the replacement of a carboxylic acid with a bioisosteric group is required. This has led to the development of a number of ionizable groups which sufficiently mimic the carboxylic acid functionality whilst improving, for example, the metabolic profile of the molecule in question. An alternative strategy involves replacement of the carboxylate by neutral functional groups. This review initially details carefully selected examples whereby tetrazoles, acyl sulfonamides or isoxazolols have been beneficially utilized as carboxylic acid bioisosteres altering physicohemical properties, interactions with the target and metabolism and/or pharmacokinetics, before delving further into the binding mode of carboxylic acid derivatives with their target proteins. This analysis highlights new ways to consider the replacement of carboxylic acids by neutral bioisosteric groups which either rely on hydrogen bonds or cation-π interactions. It should serve as a useful guide for scientists working in drug discovery.


Assuntos
Ácidos Carboxílicos , Descoberta de Drogas , Ácidos Carboxílicos/química , Sulfonamidas/química , Tetrazóis/química , Ligação Proteica
2.
Anal Bioanal Chem ; 416(5): 1199-1215, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177453

RESUMO

Carboxylic acids (CAs) are key players in human and animal metabolism. As they are hardly retained under reversed-phase liquid chromatography (RP-LC) conditions in their native form, derivatization is an option to make them accessible to RP-LC and simultaneously increase their response for mass spectrometric detection. In this work, two RP-LC tandem mass spectrometry-based methods using aniline or 3-nitrophenylhydrazine (3-NPH) as derivatization agents were compared with respect to several factors including completeness of derivatization, apparent recoveries (RAs) in both cow feces and ruminal fluid, and concentrations obtained in feces and ruminal fluid of cows. Anion exchange chromatography coupled to high-resolution mass spectrometry (AIC-HR-MS) served as reference method. Derivatization efficiencies were close to 100% for 3-NPH derivatization but variable (20-100%) and different in solvent solutions and matrix extracts for aniline derivatization. Likewise, average RAs of 13C-labeled short-chain fatty acids as internal standards were around 100% for 3-NPH derivatization but only 45% for aniline derivatization. Quantification of CAs in feces and ruminal fluid of cows initially fed a forage-only diet and then transitioned to a 65% high-grain diet which yielded similar concentrations for 3-NPH derivatization and AIC-HR-MS, but concentrations determined by aniline derivatization were on average five times lower. For these reasons, derivatization with aniline is not recommended for the quantitative analysis of CAs in animal samples.


Assuntos
Ácidos Carboxílicos , Espectrometria de Massas em Tandem , Humanos , Feminino , Animais , Bovinos , Cromatografia Líquida/métodos , Ácidos Carboxílicos/química , Espectrometria de Massas em Tandem/métodos , 60705 , Cromatografia Líquida de Alta Pressão/métodos , Compostos de Anilina
3.
Angew Chem Int Ed Engl ; 63(14): e202318579, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38235602

RESUMO

Primary sclerosing cholangitis (PSC) is a chronic inflammatory disease of the bile ducts that has been associated with diverse metabolic carboxylic acids. Mass spectrometric techniques are the method of choice for their analysis. However, the broad investigation of this metabolite class remains challenging. Derivatization of carboxylic acids represents a strategy to overcome these limitations but available methods suffer from diverse analytical challenges. Herein, we have designed a novel strategy introducing 4-nitrophenyl-2H-azirine as a new chemoselective moiety for the first time for carboxylic acid metabolites. This moiety was selected as it rapidly forms a stable amide bond and also generates a new ketone, which can be analyzed by our recently developed quant-SCHEMA method specific for carbonyl metabolites. Optimization of this new method revealed a high reproducibility and robustness, which was utilized to validate 102 metabolic carboxylic acids using authentic synthetic standard conjugates in human plasma samples including nine metabolites that were newly detected. Using this sequential analysis of the carbonyl- and carboxylic acid-metabolomes revealed alterations of the ketogenesis pathway, which demonstrates the vast benefit of our unique methodology. We anticipate that the developed azirine moiety with rapid functional group transformation will find broad application in diverse chemical biology research fields.


Assuntos
Azirinas , Hepatopatias , Nitrofenóis , Humanos , Indicadores e Reagentes , Reprodutibilidade dos Testes , Metaboloma , Ácidos Carboxílicos/química , Metabolômica/métodos
4.
Chembiochem ; 25(4): e202300672, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38051126

RESUMO

Amide bond-containing biomolecules are functionally significant and useful compounds with diverse applications. For example, N-acyl amino acids (NAAAs) are an important class of lipoamino acid amides with extensive use in food, cosmetic and pharmaceutical industries. Their conventional chemical synthesis involves the use of toxic chlorinating agents for carboxylic acid activation. Enzyme-catalyzed biotransformation for the green synthesis of these amides is therefore highly desirable. Here, we review a range of enzymes suitable for the synthesis of NAAA amides and their strategies adopted in carboxylic acid activation. Generally, ATP-dependent enzymes for NAAA biosynthesis are acyl-adenylating enzymes that couple the hydrolysis of phosphoanhydride bond in ATP with the formation of an acyl-adenylate intermediate. In contrast, ATP-independent enzymes involve hydrolases such as lipases or aminoacylases, which rely on the transient activation of the carboxylic acid. This occurs either through an acyl-enzyme intermediate or by favorable interactions with surrounding residues to anchor the acyl donor in a suitable orientation for the incoming amine nucleophile. Recently, the development of an alternative pathway involving ester-amide interconversion has unraveled another possible strategy for amide formation through esterification-aminolysis cascade reactions, potentially expanding the substrate scope for enzymes to catalyze the synthesis of a diverse range of NAAA amides.


Assuntos
Amidas , Aminoácidos , Amidas/química , Ácidos Carboxílicos/química , Lipase , Monofosfato de Adenosina , Aminas , Trifosfato de Adenosina
5.
Chemosphere ; 349: 140879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061565

RESUMO

In recent years, there has been significant interest from industrial and academic areas in the esterification of carboxylic acids catalyzed by acidic zeolites, as it represents a sustainable and economically viable approach to producing a wide range of high-value-added products. However, there is a lack of comprehensive reviews that address the intricate reaction mechanisms occurring at the catalyst interface at both the experimental and atomistic levels. Therefore, in this review, we provide an overview of the esterification reaction on acidic zeolites based on experimental and theoretical studies. The combination of infrared spectroscopy with atomistic calculations and experimental strategies using modulation excitation spectroscopy techniques combined with phase-sensitive detection is presented as an approach to detecting short-lived intermediates at the interface of zeolitic frameworks under realistic reaction conditions. To achieve this goal, this review has been divided into four sections: The first is a brief introduction highlighting the distinctive features of this review. The second addresses questions about the topology and activity of different zeolitic systems, since these properties are closely correlated in the esterification process. The third section deals with the mechanisms proposed in the literature. The fourth section presents advances in IR techniques and theoretical calculations that can be applied to gain new insights into reaction mechanisms. Finally, this review concludes with a subtle approach, highlighting the main aspects and perspectives of combining experimental and theoretical techniques to elucidate different reaction mechanisms in zeolitic systems.


Assuntos
Ácidos Carboxílicos , Zeolitas , Ácidos Carboxílicos/química , Esterificação , Zeolitas/química , Biomassa , Catálise
6.
Chemosphere ; 349: 141018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141671

RESUMO

Oil sands process-affected water (OSPW) is a by-product of the extraction of bitumen, and volumes of OSPW have accumulated across the Alberta oil sands region due to the governments zero-discharge policy. Some dissolved organics in OSPW, including toxic naphthenic acids (NAs), can be biodegraded in oxic conditions, thereby reducing the toxicity of OSPW. While there has been much focus on degradation of NAs, the biodegradation of other dissolved organic chemicals by endogenous organisms remains understudied. Here, using the HPLC-ultrahigh resolution Orbitrap mass spectrometry, we examined the microbial biodegradation of dissolved organic acids in OSPW. Non-targeted analysis enabled the estimation of biodegradation rates for unique heteroatomic chemical classes detected in negative ion mode. The microcosm experiments were conducted with and without nutrient supplementation, and the changes in the microbial community over time were investigated. Without added nutrients, internal standard-adjusted intensities of all organics, including NAs, were largely unchanged. The addition of nutrients increased the biodegradation rate of O2- and SO2- chemical classes. While anoxic biodegradation can occur in tailings ponds and end pit lakes, microbial community analyses confirmed that the presence of oxygen stimulated biodegradation of the OSPW samples studied. We detected several aerobic hydrocarbon-degrading microbes (e.g., Pseudomonas and Brevundimonas), and microbes capable of degrading sulfur-containing hydrocarbons (e.g., Microbacterium). Microbial community diversity decreased over time with nutrient addition. Overall, the results from this study indicate that toxic dissolved organics beyond NAs can be biodegraded by endogenous organisms in OSPW, but reaffirms that biological treatment strategies require careful consideration of how nutrients and dissolved oxygen may impact efficacy.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Compostos Orgânicos , Ácidos Carboxílicos/química , Oxigênio/análise
7.
Anal Chem ; 95(46): 16976-16986, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37943785

RESUMO

Carboxylic acids are central metabolites in bioenergetics, signal transduction, and post-translation protein regulation. However, the quantitative analysis of carboxylic acids as an indispensable part of metabolomics is prohibitively challenging, particularly in trace amounts of biosamples. Here we report a diazo-carboxyl/hydroxylamine-ketone double click derivatization method for the sensitive analysis of hydrophilic, low-molecular-weight carboxylic acids. In general, our method renders a 5- to 2000-fold higher response in mass spectrometry along with improved chromatographic separation. With this method, we presented the near-single-cell analysis of carboxylic acid metabolites in 10 mouse egg cells before and after fertilization. Malate, fumarate, and ß-hydroxybutyrate were found to decrease after fertilization. We also monitored the isotope labeling kinetics of carboxylic acids inside adherent cells cultured in 96-well plates during drug treatment. Finally, we applied this method to plasma or serum samples (5 µL) collected from mice and humans under pathological and physiological conditions. The double click derivatization method paves a way toward single-cell metabolomics and bedside diagnostics.


Assuntos
Ácidos Carboxílicos , Espectrometria de Massas em Tandem , Humanos , Animais , Camundongos , Ácidos Carboxílicos/química , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Marcação por Isótopo/métodos
8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38012121

RESUMO

Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist in the development of improved bioremediation practices.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Biodegradação Ambiental , Água/química , Áreas Alagadas , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/toxicidade , Genômica , Poluentes Químicos da Água/análise
9.
Nature ; 623(7988): 745-751, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788684

RESUMO

Modern retrosynthetic analysis in organic chemistry is based on the principle of polar relationships between functional groups to guide the design of synthetic routes1. This method, termed polar retrosynthetic analysis, assigns partial positive (electrophilic) or negative (nucleophilic) charges to constituent functional groups in complex molecules followed by disconnecting bonds between opposing charges2-4. Although this approach forms the basis of undergraduate curriculum in organic chemistry5 and strategic applications of most synthetic methods6, the implementation often requires a long list of ancillary considerations to mitigate chemoselectivity and oxidation state issues involving protecting groups and precise reaction choreography3,4,7. Here we report a radical-based Ni/Ag-electrocatalytic cross-coupling of substituted carboxylic acids, thereby enabling an intuitive and modular approach to accessing complex molecular architectures. This new method relies on a key silver additive that forms an active Ag nanoparticle-coated electrode surface8,9 in situ along with carefully chosen ligands that modulate the reactivity of Ni. Through judicious choice of conditions and ligands, the cross-couplings can be rendered highly diastereoselective. To demonstrate the simplifying power of these reactions, concise syntheses of 14 natural products and two medicinally relevant molecules were completed.


Assuntos
Produtos Biológicos , Técnicas de Química Sintética , Descarboxilação , Eletroquímica , Eletrodos , Preparações Farmacêuticas , Ácidos Carboxílicos/química , Nanopartículas Metálicas/química , Oxirredução , Prata/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Níquel/química , Ligantes , Preparações Farmacêuticas/síntese química , Preparações Farmacêuticas/química , Eletroquímica/métodos , Técnicas de Química Sintética/métodos
10.
J Am Chem Soc ; 145(38): 20951-20958, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698388

RESUMO

α,ß-Dehydrogenation of aliphatic acids has been realized through both enolate and ß-C-H metalation pathways. However, the synthesis of isolated ß,γ-unsaturated aliphatic acids via dehydrogenation has not been achieved to date. Herein, we report the ligand-enabled ß,γ-dehydrogenation of abundant and inexpensive free aliphatic acids, which provides a new synthetic disconnection as well as a versatile platform for the downstream functionalization of complex molecules at remote γ-sites. A variety of free aliphatic acids, including acyclic and cyclic systems with ring sizes from five-membered to macrocyclic, undergo efficient dehydrogenation. Notably, this protocol features good chemoselectivity in the presence of more accessible α-C-H bonds and excellent regioselectivity in fused bicyclic scaffolds. The utility of this protocol has been demonstrated by the late-stage functionalization of a series of bioactive terpene natural products at the γ-sites. Further functionalization of the ß,γ-double bond allows for the installation of covalent warheads, including epoxides, aziridines, and ß-lactones, into complex natural product scaffolds, which are valuable for targeted covalent drug discovery.


Assuntos
Ácidos Carboxílicos , Ácidos Graxos , Ligantes , Ácidos Carboxílicos/química
11.
J Org Chem ; 88(16): 11694-11701, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530571

RESUMO

Oxoanions such as carboxylates, phosphates, and sulfates play important roles in both chemistry and biology and are abundant on the cell surface. We report on the synthesis and properties of a rationally designed guanidinium-containing oxoanion binder, 1-guanidino-8-amino-2,7-diazacarbazole (GADAC). GADAC binds to a carboxylate, phosphate, and sulfate in pure water with affinities of 3.6 × 104, 1.1 × 103, and 4.2 × 103 M-1, respectively. Like 2-azacarbazole, which is a natural product that enables scorpions to fluoresce, GADAC is fluorescent in water (λabs = 356 nm, λem = 403 nm, ε = 13,400 M-1 cm-1). The quantum yield of GADAC is pH-sensitive, increasing from Φ = 0.12 at pH 7.4 to Φ = 0.53 at pH 4.0 as a result of the protonation of the aminopyridine moiety. The uptake of GADAC into live human melanoma cells is detectable in the DAPI channel at low micromolar concentrations. Its properties make GADAC a promising candidate for applications in oxoanion binding and fluorescence labeling in biological (e.g., the delivery of cargo into cells) and other contexts.


Assuntos
Fosfatos , Água , Humanos , Guanidina/química , Água/química , Ácidos Carboxílicos/química , Corantes
12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511624

RESUMO

The prospect of developing soluble and bioavailable Ti(IV) complex forms with physiological substrates, capable of influencing (patho)physiological aberrations, emerges as a challenge in the case of metabolism-related pathologies (e.g., diabetes mellitus 1 and 2). To that end, pH-specific synthetic efforts on binary Ti(IV)-(α-hydroxycarboxylic acid) systems, involving natural physiological chelator ligands (α-hydroxy isobutyric acid, D-quinic acid, 2-ethyl-2-hydroxybutyric acid) in aqueous media, led to the successful isolation of binary crystalline Ti(IV)-containing products. The new materials were physicochemically characterized by elemental analysis, FT-IR, TGA, and X-ray crystallography, revealing in all cases the presence of mononuclear Ti(IV) complexes bearing a TiO6 core, with three bound ligands of variable deprotonation state. Solution studies through electrospray ionization mass spectrometry (ESI-MS) revealed the nature of species arising upon dissolution of the title compounds in water, thereby formulating a solid-state-solution correlation profile necessary for further employment in biological experiments. The ensuing cytotoxicity profile (pre-adipocytes and osteoblasts) of the new materials supported their use in cell differentiation experiments, thereby unraveling their structure-specific favorable effect toward adipogenesis and mineralization through an arsenal of in vitro biological assays. Collectively, well-defined atoxic binary Ti(IV)-hydroxycaboxylato complexes, bearing bound physiological substrates, emerge as competent inducers of cell differentiation, intimately associated with cell maturation, thereby (a) associating the adipogenic (insulin mimetic properties) and osteogenic potential (mineralization) of titanium and (b) justifying further investigation into the development of a new class of multipotent titanodrugs.


Assuntos
Ácidos Carboxílicos , Titânio , Ligantes , Titânio/farmacologia , Titânio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Diferenciação Celular , Ácidos Carboxílicos/química , Adipócitos , Cristalografia por Raios X
13.
Bioorg Med Chem Lett ; 91: 129363, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295616

RESUMO

Fluorinated alcohols and phenols are potentially useful as bioisosteres of the carboxylic acid functional group. To enable a direct comparison of the properties of fluorinated carboxylic acid surrogates with those of other commonly used, non-fluorinated bioisosteres, we conducted a structure-property relationship (SPR) study based on matched molecular pair (MMP) analyses. A series of representative examples have been characterized by experimentally determining physicochemical properties, such as acidity (pKa), lipophilicity (logD7.4), and permeability (PAMPA). The results presented can help estimate the relative changes in physicochemical properties that may be attainable by replacing the carboxylic acid functional group with fluorine containing surrogate structures.


Assuntos
Álcoois , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Flúor/química
14.
J Org Chem ; 88(13): 9372-9380, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343224

RESUMO

Visible-light-induced decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids with [Me4N][SeCF3], oxidant, and catalysts afforded a variety of (hetero)aryl trifluoromethyl selenoethers in good yields. The reaction might involve a radical process, which generated (hetero)aryl radicals from the stable (hetero)aromatic carboxylic acids via oxidative decarboxylation with NFSI as the oxidant, [di-tBu-Mes-Acr-Ph][BF4] as the photocatalyst, and 1,1'-biphenyl as the cocatalyst. Both catalysts had a decisive influence on the reaction. The trifluoromethylselenolation was further promoted by the copper salts probably via Cu-mediated cross-coupling of the sensitive SeCF3 species with the in situ formed (hetero)aryl radicals. Advantages of the method include visible light irradiation, mild reaction conditions at ambient temperature, good functional group tolerance, no pre-functionalization/activation of the starting carboxylic acids, and applicability to drug molecules. This protocol is promising and synthetically useful, which overcame the limitations of the known trifluoromethylselenolation methods and represented the first decarboxylative trifluoromethylselenolation of (hetero)aromatic carboxylic acids.


Assuntos
Ácidos Carboxílicos , Cobre , Cobre/química , Descarboxilação , Ácidos Carbocíclicos , Ácidos Carboxílicos/química , Oxidantes
15.
Environ Sci Technol ; 57(23): 8796-8807, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37195265

RESUMO

In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the ß-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éter , Ácidos Carboxílicos/química , Poluentes Químicos da Água/análise , Éteres , Fluorocarbonos/análise
16.
Org Lett ; 25(22): 4080-4085, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37234032

RESUMO

A visible-light-induced four-component Ritter-type reaction was developed for the synthesis of ß-trifluoromethyl imides from CF3Br, alkenes, carboxylic acids, and nitriles. This protocol features mild reaction conditions, a broad substrate scope, and excellent functional group compatibility. Furthermore, this method has been proven to be suitable for the late-stage diversification of drug molecules. A mechanism involving a Ritter-type reaction and Mumm rearrangement was proposed on the basis of the control experiments.


Assuntos
Imidas , Luz , Imidas/química , Alcenos/química , Ácidos Carboxílicos/química , Nitrilas/química
17.
Nature ; 618(7965): 519-525, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258673

RESUMO

Cyclic organic molecules are common among natural products and pharmaceuticals1,2. In fact, the overwhelming majority of small-molecule pharmaceuticals contain at least one ring system, as they provide control over molecular shape, often increasing oral bioavailability while providing enhanced control over the activity, specificity and physical properties of drug candidates3-5. Consequently, new methods for the direct site and diastereoselective synthesis of functionalized carbocycles are highly desirable. In principle, molecular editing by C-H activation offers an ideal route to these compounds. However, the site-selective C-H functionalization of cycloalkanes remains challenging because of the strain encountered in transannular C-H palladation. Here we report that two classes of ligands-quinuclidine-pyridones (L1, L2) and sulfonamide-pyridones (L3)-enable transannular γ-methylene C-H arylation of small- to medium-sized cycloalkane carboxylic acids, with ring sizes ranging from cyclobutane to cyclooctane. Excellent γ-regioselectivity was observed in the presence of multiple ß-C-H bonds. This advance marks a major step towards achieving molecular editing of saturated carbocycles: a class of scaffolds that are important in synthetic and medicinal chemistry3-5. The utility of this protocol is demonstrated by two-step formal syntheses of a series of patented biologically active small molecules, prior syntheses of which required up to 11 steps6.


Assuntos
Produtos Biológicos , Carbono , Ácidos Carboxílicos , Cicloparafinas , Hidrogênio , Produtos Biológicos/química , Ácidos Carboxílicos/química , Cicloparafinas/química , Preparações Farmacêuticas/química , Piridonas/química , Carbono/química , Hidrogênio/química , Sulfonamidas/química , Ligantes , Química Farmacêutica , Quinuclidinas/química , Ciclobutanos/química
18.
J Hazard Mater ; 452: 131353, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030227

RESUMO

With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Éter , Ecossistema , Cadeia Alimentar , Ácidos Carboxílicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Invertebrados , Fluorocarbonos/análise , Éteres , Etil-Éteres , Peixes , China , Ácidos Alcanossulfônicos/análise
19.
Int J Biol Macromol ; 240: 124526, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080403

RESUMO

Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the dynamics, mechanisms, and unique features of the enzymes. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.


Assuntos
Biotecnologia , Oxirredutases , Oxirredutases/metabolismo , Aldeídos/metabolismo , Ácidos Carboxílicos/química
20.
Chemistry ; 29(35): e202300556, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37015030

RESUMO

The direct amide bond formation between a carboxylic acid and an amine still constitutes a challenging reaction for both academia and industry. We demonstrate herein that several pairs of amines (halogen bond acceptors) and organohalogen sources may be used for the photochemical amidation reaction under either UVA or sunlight irradiation. Our studies led to the identification of pyridine-CBr4 as an efficient agent to perform amide synthesis under LED 370 nm irradiation, avoiding super-stoichiometric quantities. An extended substrate scope was demonstrated, showing that the widely used amino and carboxyl protecting groups are compatible with this photochemical protocol, while a number of industrially interesting products and bioactive compounds were synthesized. Direct infusion-high resolution mass spectrometry studies suggest an unprecedented type of carboxylic acid activation mode upon irradiation, involving the generation of a symmetric anhydride, an active ester with pyridine N-oxide and a mixed anhydride with hypobromous acid.


Assuntos
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Amidas/química , Piridinas , Anidridos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...